Storage of Sensitive Sensors in Nitrogen inside a Vacuum and Pressure Chamber

There are many components which react adversely to air. Silicon Wafers are one example. Other examples include Silicon Based Sensors or Gallium Based Detectors. Conversely, medical devices and products may also have a need to be stored either in a vacuum environment or an oxygen free environment.

This particular system was envisioned, designed, and made for a Medical Device Manufacturer who also builds Sensitive Sensors. Our Acrylic Vacuum Chamber had to be a multi-use chamber. The requirements were for our chamber to have full vacuum capabilities of less than 5 Torr and capable of 5 psi of overpressure. The chamber was used to vacuum store medical device components between manufacturing process steps between batches. Conversely, there was also a need to store Silicon Based Nano sensors inside a pressurized chamber filled with nitrogen only. The vacuum chamber was evacuated several times and filled with nitrogen. Finally, the Silicon Based Nano-sensors were placed into the chamber. Finally, the chamber was now pressurized up to 5psig. The overpressure prevented any gas permeation from the outside towards the inside because the air was pushed out. This eliminated the risk of contamination.

What you are looking at is a small vacuum chamber (about 12 inch wide x 12inch deep x 6 inch high) that is able to go to 5 Torr of absolute pressure during vacuum operations and 5 psi of positive pressure during overpressure nitrogen storage. You can see the thumb screws that are used to clamp the O-Ring against the acrylic chamber in order to keep an air tight seal. You can also see the vacuum dial gauge and vacuum valves. It’s a bit harder to see, but there is an Oil Free Vacuum Pump present below the vacuum chamber. There is also another valve that is present on the bottom wall of the chamber. This system is often used as a multi purposed system because it allows vacuum and pressure applications simultaneously.

Are you looking to store your products inside a vacuum or an oxygen free chamber? What about overpressure nitrogen storage? Contact Us today to discover how we can be of service to you.

WAIT! Take a look at similar Items you may like…

Our clients prefer to work with us because we are Experts in Vacuum Science and Technology. There is a tremendous amount of valuable resources and information regarding vacuum systems and vacuum technology; check them out by clicking on the links below.

Acrylic Pressure and Vacuum Chambers
Acrylic Pressure and Vacuum Chambers are Pressure chambers that are capable of vacuum ratings that are the same vacuum rating of acrylic vacuum chambers. Keep in mind that Acrylic Pressure and Vacuum Chambers have a pressure limit of 15PSIG
D-SUB Vacuum Feedthroughs
D-Sub Vacuum Feedthroughs are universal connectors that enable you to connect from the outside towards the inside of your vacuum chamber. We carry a large list of D-subminiature connectors for your vacuum applications such as the 9 pin, 15 pin, 25 pin, 37 pin, and 50 pin or a combination of any described.
Our Work: Vacuum Storage of Chemicals that interact with Stainless Steel
There are countless chemicals and metals that interact with Steel or Stainless Steel. According to our investigation, Gallium, Cadmium, Beryllium, and Zinc are some examples of materials which will interact with Steel or Stainless Steel during vacuum Storage.
Related Articles: In Process Seal Integrity Testing of Food Bars sealed with Flow Wrappers
This article will talk about how to test the seal integrity of food bars. You will understand what you will need to do in order to ensure good seal quality. This article covers the seal integrity testing of Breakfast bars, Chocolate candy bars, Crisped rice bars, Energy bars, Granola bars, Health bars, Protein bars, Fruit and Nut Bars, Meal Replacement Bars or any other food bar sealed with a flow wrapper.