Storage of Sensitive Sensors in Nitrogen inside a Vacuum and Pressure Chamber

There are many components which react adversely to air. Silicon Wafers are one example. Other examples include Silicon Based Sensors or Gallium Based Detectors. Conversely, medical devices and products may also have a need to be stored either in a vacuum environment or an oxygen free environment.

This particular system was envisioned, designed, and made for a Medical Device Manufacturer who also builds Sensitive Sensors. Our Acrylic Vacuum Chamber had to be a multi-use chamber. The requirements were for our chamber to have full vacuum capabilities of less than 5 Torr and capable of 5 psi of overpressure. The chamber was used to vacuum store medical device components between manufacturing process steps between batches. Conversely, there was also a need to store Silicon Based Nano sensors inside a pressurized chamber filled with nitrogen only. The vacuum chamber was evacuated several times and filled with nitrogen. Finally, the Silicon Based Nano-sensors were placed into the chamber. Finally, the chamber was now pressurized up to 5psig. The overpressure prevented any gas permeation from the outside towards the inside because the air was pushed out. This eliminated the risk of contamination.

What you are looking at is a small vacuum chamber (about 12 inch wide x 12inch deep x 6 inch high) that is able to go to 5 Torr of absolute pressure during vacuum operations and 5 psi of positive pressure during overpressure nitrogen storage. You can see the thumb screws that are used to clamp the O-Ring against the acrylic chamber in order to keep an air tight seal. You can also see the vacuum dial gauge and vacuum valves. It’s a bit harder to see, but there is an Oil Free Vacuum Pump present below the vacuum chamber. There is also another valve that is present on the bottom wall of the chamber. This system is often used as a multi purposed system because it allows vacuum and pressure applications simultaneously.

Are you looking to store your products inside a vacuum or an oxygen free chamber? What about overpressure nitrogen storage? Contact Us today to discover how we can be of service to you.

You may be interested in some of our other items

Our clients prefer to work with us because we are Experts in Custom Fabrication (especially Polymer Fabrication). You should check out some of our other items we carry; click on the links below.

Vacuum Decay Leak Testing Systems
Vacuum Decay Leak Testing Systems are Instruments that detect and quantify a leak by measuring the drop in vacuum (pressure) inside the specimen. During a vacuum decay leak test, the specimen is placed into a vacuum chamber, the vacuum is pulled to a specified setpoint, and the drop in vacuum is monitored and recorded over time. If a leak in the specimen exists, the air will travel from a higher pressure (inside the specimen) to a lower pressure (vacuum chamber). As a results of the additional air, the vacuum levels will drop whereas a leak can be detected and quantified.
Wire Vacuum Feedthroughs
Wire Vacuum Feedthroughs are wires that are run from the outside of the chamber towards the inside of the vacuum chamber. We carry a wide variety of wires and wire gauges that can be used with any vacuum chamber.
Our Work: Leak Quality Testing and Quality Control of Packets
Quality Control during Production runs is a very important procedure you must perform on your manufactured products. This is especially critical is you are an FDA manufacturer where regulatory compliance is important and necessary. Our Vacuum Chambers are specifically built to assist you meet your Quality Control and Regulatory compliance needs.
Related Articles: Force Decay Leak Testing
Force Decay Leak Testing is a very popular quantitative leak testing method used to quality test package and product integrity due to its ability to detect small leaks which cannot be seen through visual inspection. In this method, the test specimen is internally inflated by either internal pressurization or vacuum force. The inflated test specimen will, in turn, apply a force on a pressure transducer. Finally, the change in force applied by the inflated specimen over a specified time is observed.