Testing of High Potential Voltage Cable Discharge Arc Using a Cylindrical Vacuum Chamber

Testing of High Potential Voltage Cable Discharge Arc Using a Cylindrical Vacuum Chamber 01
Testing of High Potential Voltage Cable Discharge Arc Using a Cylindrical Vacuum Chamber 01
This cylindrical vacuum chamber is utilized for testing high potential voltage cables for potential discharging at higher altitudes. Since air is acting as an insulator at sea level, no electric discharge is present at lower altitudes. However, once the pressure is decreased as a result of higher altitudes, less air is present to act as an insulator. This creates a problem because if an electric discharge happens, it can result in catastrophic failure of electrical components, especially if these components are critical. It is therefore very important to test these cables for discharge by using a vacuum chamber to simulate an air pressure at higher altitudes. The vacuum requirements for this test where only to go to 35,000 feet pressure equivalent which is about 165 Torr.

Our client provided us with a the test cable, which is a high voltage cable. The requirements were to test only one section of the cable. The challenge here is due to the fact that the test cable has various diameters and therefore a sealing plate must be designed to accommodate the proper thickness at which the cable is to be tested.

What you see here is a cylindrical vacuum chamber about 60 inch long and about 10 inch Inside Diameter. The rear of the chamber has the door clamped against the rear wall. We provided our client with the rear door for easier access to the chamber from the back. The front on the other hand, has a sealing plate that is specifically designed to have a double sealing O-Ring which seals again the sealing plate and against the inside of the Hi-Pot Cable. As soon as the Cable and the O-Ring are in place, the vacuum can be pulled and a pressure of 165 Torr is achieved within minutes. Now the cable can be tested for discharge and a safe airplane component can be successfully tested and made. You can see a video going a little bit more into detail about how this vacuum sealing mechanism works and how a part of the cable is used for testing purposes.

Video of the Setup

Did you know that we carry a many more products?

Our clients prefer to work with us because we are Experts in Vacuum Science and Technology. What are you building? Take a look at the links below and discover some of the cool things we make.

Vacuum Bubble Emission ASTM 3078 Leak Testing Systems
Bubble Emission (ASTM 3078) Leak Testing Systems are instruments that are used during the Quality Control process discover and locate leaks or seal integrity failures. Leaks are detected by submerging the specimen into a tank of water, applying a vacuum, and inspecting the submersed specimen for bubble emission. Our Bubble Leak Testing Systems are designed and built to conform to the ASTM D3078 protocol standard.
Ethernet Vacuum Feedthroughs
Ethernet Vacuum Feedthroughs are Vacuum Rated Ethernet connectors that enable you to run ethernet cables into your vacuum chamber. Simply connect your ethernet connector to the outside of the vacuum chamber and another ethernet cord from the inside and run it into your part present inside your vacuum chamber.
Our Work: Chamber for Vacuum Extrusion System
This is a custom acrylic vacuum chamber build for a high volume manufacturer of parts which are fabricated using vacuum extrusion techniques. The challenge was to build a vacuum chamber system which mated on two perpendicular surfaces; on the bottom and on the rear of the chamber. This was accomplished by incorporating a double gasket mechanism on the bottom and incorporating a clamping mechanism on the rear.
Related Articles: Visual Inspection Quality Testing of Heat Sealed Packages
Visual inspection is an attractive option because it does not require the purchase of any additional equipment. There are several arguments against Visual Inspection of heat seals; the argument against visual inspection is that visual inspection is subjective, unreliable, operator dependent, or not a valid method of inspection. However, if you have the correct training, procedures, and documentation in place, visual inspection can become a powerful tool in your quest for better packaging.