Testing of High Potential Voltage Cable Discharge Arc Using a Cylindrical Vacuum Chamber

Testing of High Potential Voltage Cable Discharge Arc Using a Cylindrical Vacuum Chamber 01
Testing of High Potential Voltage Cable Discharge Arc Using a Cylindrical Vacuum Chamber 01
This cylindrical vacuum chamber is utilized for testing high potential voltage cables for potential discharging at higher altitudes. Since air is acting as an insulator at sea level, no electric discharge is present at lower altitudes. However, once the pressure is decreased as a result of higher altitudes, less air is present to act as an insulator. This creates a problem because if an electric discharge happens, it can result in catastrophic failure of electrical components, especially if these components are critical. It is therefore very important to test these cables for discharge by using a vacuum chamber to simulate an air pressure at higher altitudes. The vacuum requirements for this test where only to go to 35,000 feet pressure equivalent which is about 165 Torr.

Our client provided us with a the test cable, which is a high voltage cable. The requirements were to test only one section of the cable. The challenge here is due to the fact that the test cable has various diameters and therefore a sealing plate must be designed to accommodate the proper thickness at which the cable is to be tested.

What you see here is a cylindrical vacuum chamber about 60 inch long and about 10 inch Inside Diameter. The rear of the chamber has the door clamped against the rear wall. We provided our client with the rear door for easier access to the chamber from the back. The front on the other hand, has a sealing plate that is specifically designed to have a double sealing O-Ring which seals again the sealing plate and against the inside of the Hi-Pot Cable. As soon as the Cable and the O-Ring are in place, the vacuum can be pulled and a pressure of 165 Torr is achieved within minutes. Now the cable can be tested for discharge and a safe airplane component can be successfully tested and made. You can see a video going a little bit more into detail about how this vacuum sealing mechanism works and how a part of the cable is used for testing purposes.

Video of the Setup

You may be interested in some of our other items

We treat our customers well by Over-Delivering on our Promises (reason why we are Highly Rated on Google My Business). Check out some of our other items we carry that you can combine/integrate with your systems or projects.

Altitude Simulation Systems
Altitude simulation systems are devices that simulate a certain altitude equivalent by controlling the vacuum inside a vacuum chamber. Altitude is a function of absolute pressure, therefore if a certain pressure is accomplished inside a vacuum chamber, a specific altitude can be simulated from the set pressure. Altitude simulation systems can be configured to not only hold a certain pressure, a complete pressure vs time profile can be programmed to be run. Furthermore, pressure vs time recipes can be loaded and run based on test requirements.
Digital Vacuum Gauge Instruments
A Digital Vacuum Gauge is an instrument which precisely measures a vacuum level inside a vacuum chamber. Unlike a rough dial vacuum gauge, which shows only where the vacuum chamber is roughly with an error of up to 3% (a high as 1 inHg) a digital vacuum gauge will show vacuum levels up to 3 significant figure in Torr and millitorr – this makes the digital vacuum gauge ten thousand times more accurate than the dial vacuum gauge.
Our Work: Electronic Component Testing of Satellites at High Altitudes
Electronic Components of Satellites behave differently in outer space as compared to how these behave at sea level. How do you know that your satellite will survive outer space? How do you confirm that your circuit boards will function properly at higher altitudes? There is only one way to find out, and that is to test and validate your design.
Related Articles: Anatomy of the Pressure Decay, Vacuum Decay, and Force Decay Curve
How do you know that you have a good part during your leak test? In order to understand your leak test, you must first understand the Test Decay Curve and what it tells you about your test specimen. There is a certain way that a test specimen behaves during the leak test.