Testing of High Potential Voltage Cable Discharge Arc Using a Cylindrical Vacuum Chamber

Testing of High Potential Voltage Cable Discharge Arc Using a Cylindrical Vacuum Chamber 01
Testing of High Potential Voltage Cable Discharge Arc Using a Cylindrical Vacuum Chamber 01
This cylindrical vacuum chamber is utilized for testing high potential voltage cables for potential discharging at higher altitudes. Since air is acting as an insulator at sea level, no electric discharge is present at lower altitudes. However, once the pressure is decreased as a result of higher altitudes, less air is present to act as an insulator. This creates a problem because if an electric discharge happens, it can result in catastrophic failure of electrical components, especially if these components are critical. It is therefore very important to test these cables for discharge by using a vacuum chamber to simulate an air pressure at higher altitudes. The vacuum requirements for this test where only to go to 35,000 feet pressure equivalent which is about 165 Torr.

Our client provided us with a the test cable, which is a high voltage cable. The requirements were to test only one section of the cable. The challenge here is due to the fact that the test cable has various diameters and therefore a sealing plate must be designed to accommodate the proper thickness at which the cable is to be tested.

What you see here is a cylindrical vacuum chamber about 60 inch long and about 10 inch Inside Diameter. The rear of the chamber has the door clamped against the rear wall. We provided our client with the rear door for easier access to the chamber from the back. The front on the other hand, has a sealing plate that is specifically designed to have a double sealing O-Ring which seals again the sealing plate and against the inside of the Hi-Pot Cable. As soon as the Cable and the O-Ring are in place, the vacuum can be pulled and a pressure of 165 Torr is achieved within minutes. Now the cable can be tested for discharge and a safe airplane component can be successfully tested and made. You can see a video going a little bit more into detail about how this vacuum sealing mechanism works and how a part of the cable is used for testing purposes.

Video of the Setup

Did you know that we carry a many more products?

Our clients prefer to work with us because we are Experts in Custom Fabrication (especially Polymer Fabrication). There is a tremendous amount of valuable resources and information regarding vacuum systems and vacuum technology; check them out by clicking on the links below.

Helium Leak Testing Systems
Helium Leak Testing Systems are instruments which detect leaks in specimen by detecting present of helium. Helium is used as a tracer gas to detect and quantify a leak. For example, a test specimen is filled with helium and placed into a test chamber, a vacuum is pulled and a helium mass spectrometer is connected to the test chamber. If helium is detected, it is due to the fact that it has escaped from the specimen through a leak path. Helium Leak Testing is a qualitative and quantitative method of detecting product leaks.
Viewport Vacuum Feedthroughs
Viewports Vacuum Feedthroughs are windows that enable you to look into the inside of your vacuum chamber. If you are using a metallic vacuum chamber with a metallic lid, you will not be able to view the interior of your vacuum chamber unless you have a viewport. Viewports also enable a different electromagnetic spectrum of light to passthroughs.
Our Work: Electronic Component Testing of Satellites at High Altitudes
Electronic Components of Satellites behave differently in outer space as compared to how these behave at sea level. How do you know that your satellite will survive outer space? How do you confirm that your circuit boards will function properly at higher altitudes? There is only one way to find out, and that is to test and validate your design.
Related Articles: Visual Inspection Quality Testing of Heat Sealed Packages
Visual inspection is an attractive option because it does not require the purchase of any additional equipment. There are several arguments against Visual Inspection of heat seals; the argument against visual inspection is that visual inspection is subjective, unreliable, operator dependent, or not a valid method of inspection. However, if you have the correct training, procedures, and documentation in place, visual inspection can become a powerful tool in your quest for better packaging.