Electronic Component Testing of Satellites at High Altitudes

Electronic Components of Satellites behave differently in outer space as compared to how these behave at sea level. How do you know that your satellite will survive outer space? How do you confirm that your circuit boards will function properly at higher altitudes? There is only one way to find out, and that is to test and validate your design.

Electronic components are part of every satellite. Even Sputnik, the first satellite in space, had electronic components, such a transponder, etc... Electrical circuits create heat during operation this happens because electrons travel through electrical conductors which create friction which in turn create heat. The heat created by any electrical circuit quickly dissipates through convection. Convection is the heat transfer due to bulk movement of molecules such as liquids or gasses.

We take convective cooling for granted here on earth. However, convection is almost non-existent at higher altitudes. As the altitude increases, the air pressure decreases. Air pressure decreases because less air molecules are present. Less air molecules means less heat can escape through convection. Hence other cooling system and methods have to be developed and tested in order to keep the electronics running. Many electronic components on a satellite will only properly function if they are maintained within a specified temperature range.

We were exited to have been contacted by one of the developers of Cube Sat asking for our help on testing their Satellite components. What you are looking at is a clear acrylic vacuum chamber, 14 inch inside dimensions, hinged side door, front loading. This chamber can be placed on a table top and accessed by opening the front door.

However, this vacuum chamber is different from our standard built vacuum chambers. This chamber has the vacuum valve, the venting valve, the vacuum gauge moved to the top wall. Conversely, a Two-Pair, Type J, Thermocouple Vacuum Feedthrough is placed on top left corner of the side wall. An 12 wire, 18 Gauge Vacuum Feedthrough has been placed on the top right corner of the side wall. A Multipin, 25 pin is present on the lower left corner. Finally, an NW40 Port is located on the lower right corner. This NW40 port is used to connect a high vacuum pump that will generate a vacuum high enough in order to simulate the absolute pressures of Low Earth Orbit.

While the chamber is under Vacuum, Cube Sats will be placed inside for testing. Electrical connections are run from the outside and connected to the CubeSat inside. This is possible because these Electrical Vacuum Feedthroughs are specially built components what allow the user to connect to the CubeSat from the outside without compromising the vacuum.

If you have a need for a custom vacuum chamber with Vacuum Feedthroughs, feel free to Contact Us anytime.

You may be interested in some of our other items

Our clients prefer to work with us because we are Experts in Vacuum Science and Technology. There is a tremendous amount of valuable resources and information regarding vacuum systems and vacuum technology; check them out by clicking on the links below.

Vacuum Oven Systems
Vacuum Ovens are vacuum chambers and ovens combined in one system. Vacuum ovens are necessary during processes which require the specimen to be subjected to a hypobaric and hyperthermal environment. Our Vacuum Oven Systems enable to you run a complete vacuum vs time and temperature vs time profile. We also carry portable vacuum oven systems and custom vacuum oven systems.
Digital Vacuum Gauge Instruments
A Digital Vacuum Gauge is an instrument which precisely measures a vacuum level inside a vacuum chamber. Unlike a rough dial vacuum gauge, which shows only where the vacuum chamber is roughly with an error of up to 3% (a high as 1 inHg) a digital vacuum gauge will show vacuum levels up to 3 significant figure in Torr and millitorr – this makes the digital vacuum gauge ten thousand times more accurate than the dial vacuum gauge.
Our Work: High Altitude Vacuum Testing of Electrical Connectors and Components
This was an interesting project where one of our customers needed to test wires up to 44 inches long within a high altitude simulation environment. In addition to testing wires, several other electric connectors required altitude testing as well. The altitude requirements were 100,000 feet (30.510 km) which corresponds to 8.36 Torr - a piece of cake when it comes to the vacuum requirements of our chambers.
Related Articles: Rotary Vane Vacuum Pumps, The Definitive Guide
In the article we are going to cover rotary vane vacuum pumps. We will touch upon how they work, what they are used for, when to utilize a rotary vane vacuum pump, its advantages and disadvantages. Perhaps you have noticed that rotary vane vacuum pumps come in all shapes and sizes. On one website, the vacuum pump is less than a $100; on another website you see a vacuum pump quotes at $10,000. I would imagine that you immediately ask yourself what the deal here is.