Electronic Component Testing of Satellites at High Altitudes

Electronic Components of Satellites behave differently in outer space as compared to how these behave at sea level. How do you know that your satellite will survive outer space? How do you confirm that your circuit boards will function properly at higher altitudes? There is only one way to find out, and that is to test and validate your design.

Electronic components are part of every satellite. Even Sputnik, the first satellite in space, had electronic components, such a transponder, etc... Electrical circuits create heat during operation this happens because electrons travel through electrical conductors which create friction which in turn create heat. The heat created by any electrical circuit quickly dissipates through convection. Convection is the heat transfer due to bulk movement of molecules such as liquids or gasses.

We take convective cooling for granted here on earth. However, convection is almost non-existent at higher altitudes. As the altitude increases, the air pressure decreases. Air pressure decreases because less air molecules are present. Less air molecules means less heat can escape through convection. Hence other cooling system and methods have to be developed and tested in order to keep the electronics running. Many electronic components on a satellite will only properly function if they are maintained within a specified temperature range.

We were exited to have been contacted by one of the developers of Cube Sat asking for our help on testing their Satellite components. What you are looking at is a clear acrylic vacuum chamber, 14 inch inside dimensions, hinged side door, front loading. This chamber can be placed on a table top and accessed by opening the front door.

However, this vacuum chamber is different from our standard built vacuum chambers. This chamber has the vacuum valve, the venting valve, the vacuum gauge moved to the top wall. Conversely, a Two-Pair, Type J, Thermocouple Vacuum Feedthrough is placed on top left corner of the side wall. An 12 wire, 18 Gauge Vacuum Feedthrough has been placed on the top right corner of the side wall. A Multipin, 25 pin is present on the lower left corner. Finally, an NW40 Port is located on the lower right corner. This NW40 port is used to connect a high vacuum pump that will generate a vacuum high enough in order to simulate the absolute pressures of Low Earth Orbit.

While the chamber is under Vacuum, Cube Sats will be placed inside for testing. Electrical connections are run from the outside and connected to the CubeSat inside. This is possible because these Electrical Vacuum Feedthroughs are specially built components what allow the user to connect to the CubeSat from the outside without compromising the vacuum.

If you have a need for a custom vacuum chamber with Vacuum Feedthroughs, feel free to Contact Us anytime.

Did you know that we carry a many more products?

Our clients prefer to work with us because we are Experts in Custom Fabrication (especially Polymer Fabrication). What are you building? Take a look at the links below and discover some of the cool things we make.

Vacuum Bubble Emission ASTM 3078 Leak Testing Systems
Bubble Emission (ASTM 3078) Leak Testing Systems are instruments that are used during the Quality Control process discover and locate leaks or seal integrity failures. Leaks are detected by submerging the specimen into a tank of water, applying a vacuum, and inspecting the submersed specimen for bubble emission. Our Bubble Leak Testing Systems are designed and built to conform to the ASTM D3078 protocol standard.
Liquid and Gas Vacuum Feedthroughs
A Liquid and Gas Vacuum Feedthroughs are tubes that will allow you to run liquid or gas into your vacuum chamber without contaminating the vacuum levels or vacuum chamber in general. Say you are looking to run a coolant into the vacuum chamber and cool a component you are testing. You can simply install a liquid and gas vacuum feedthrough are run your coolant towards your test specimen.
Our Work: Pressure and Vacuum Chamber used for Calibration of Weather Stations across the US
Have you ever wondered how the weather forecast works? You must admit; the weathermen (or weatherwoman) have become a whole lot more accurate over time. 10 years ago, the weather forecast was not as accurate as it is today. Part of the reason is that we have better forecasting technology as in more powerful computers who crunch numbers faster to out a most likely scenario. Another reason is that mathematics, physics, and science has progressed. The main reason however, is that we have better tools and equipment.
Related Articles: Force Decay Leak Testing
Force Decay Leak Testing is a very popular quantitative leak testing method used to quality test package and product integrity due to its ability to detect small leaks which cannot be seen through visual inspection. In this method, the test specimen is internally inflated by either internal pressurization or vacuum force. The inflated test specimen will, in turn, apply a force on a pressure transducer. Finally, the change in force applied by the inflated specimen over a specified time is observed.